

uClinux CoreCommander BSP
User Guide

CoreCommander BSP Version: 2.1.1.1
Document Version: 1.1
Date: January 2009

System Level Solutions, Inc, (USA)

14100 Murphy Avenue,
San Martin, CA 95046
(408) 852 - 0067

System Level Solutions, (India) Pvt, Ltd.

Plot # 32, Zone - D/4, Phase 1,
G.I.D.C. Estate, V.U. Nagar - 388 121
Gujarat, India
91-2692-229280
http://www.slscorp.com

http://www.slscorp.com/

ii System Level Solutions

Copyright © 2008-2009, System Level Solutions, Inc. (SLS) All rights reserved. SLS, an embedded systems
company, the stylized SLS logo, specific device designations, and all other words and logos that are identified
as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of SLS in
India and other countries. All other products or service names are the property of their respective holders. SLS
products are protected under numerous U.S. and foreign patents and pending applications, mask working
rights, and copyrights. SLS reserves the right to make changes to any products and services at any time without
notice. SLS assumes no responsibility or liability arising out of the application or use of any information,
products, or service described herein except as expressly agreed to in writing by SLS. SLS customers are
advised to obtain the latest version of specifications before relying on any published information and before
orders for products or services.

ug_CoreCommanderbsp_1.1

About This Document uClinux CoreCommander BSP

System Level Solutions iii

About This Document

This document describes the usage of the uClinux CoreCommander board support
package. With the help of the bsp you can develop embedded applications using
CoreCommander board and uClinux.

Table below shows the revision history of the document.
Version Date Description

1.1 January 2009 - Updated document for CoreCommnader
BSP, ver. 2.1.1.1

- Updated section 1.3 Supported devices.

- Updated section 4.3 SLS SD Host
Controller IP driver

- Updated section 4.5 USB 2.0 IP driver

- Added Appendix A, B, C.

1.0 September 2008 First release

How to Contact SLS

For the most up-to-date information about SLS products, go to the SLS
worldwide website at http://www.slscorp.com. For additional information about
SLS products, consult the source shown below.

Information Type Email
E-mail Product literature services, SLS
literature services, Non-technical
customer services, Technical

support@slscorp.com

http://www.slscorp.com/
mailto:support@slscorp.com

Typographic Conventions uClinux CoreCommander BSP

Typographic Conventions

This document uses the typographic conventions shown as below.
Visual Cue Meaning

Bold type with initial
capital letters

All headings, subheadings titles in a document are
displayed in bold type with initial capital letters. E.g.
Configuring and Compiling.

Bold Project names, Menu commands, disk drive names,
filenames, filename extensions, and software utility
names are shown in bold type. Examples: Helloworld,
project name, Exit menu command, romfs/bin directory,
sls_cc_bsp_hw_v10.sof file.

Courier Anything that must be typed exactly as it appears is
shown in Courier type. For example: cd /home/
uClinux-2.1.1.1/nios2-linux/uClinux-
dist.

1, 2 Numbered steps are used in a list of items, when the
sequence of items is important. Such as steps listed in
procedure.

• Bullets are used in a list of items when the sequence of
items is not important.

Hand points to special information that requires special
attention

Caution indicates required information that needs special
consideration and understanding and should be read
prior to starting or continuing with the procedure or
process.

Warning indicates information that should be read prior to
starting or continuing the procedure or processes.

Feet direct you to more information on a particular topic.

iv System Level Solutions

 uClinux CoreCommander BSP

System Level Solutions v

Table of Contents

1. Introduction... 1
1.1 Software... 1
1.2 Hardware.. 1
1.3 Development Platform Requirements .. 3
1.4 Setup .. 3

2. uClinux CoreCommander BSP Development Environment 5
2.1 CoreCommander BSP SOPC System .. 5
2.2 Development Environment .. 5

2.2.1 CoreCommander BSP Components... 6
2.2.2 IP Address Used .. 6

2.3 Development Host ... 7
2.3.1 Downloading and Unpacking uClinux CoreCommander BSP 7
2.3.2 Directory Contents... 8

2.4 Development Target... 8
2.4.1 Configuring and Compiling uClinux ... 8
2.4.2 Set System.ptf .. 11
2.4.3 Customization of Kernel Settings .. 12
2.4.4 Building uClinux zImage... 14

3. Downloading and Running zImage ... 15
3.1 Running zImage on Linux Using JTAG UART Console... 15

4. Configuring Device Drivers and File Systems.. 16
4.1 Board Selection.. 16
4.2 Flash Memory (MTD) Driver .. 16

4.2.1 JFFS2 File System Configuration.. 17
4.3 SLS SD Host Controller Driver ... 18

4.3.1 VFAT... 18
4.4 SLS Ethernet IP Driver .. 19

4.4.1 NFS ... 19
4.5 SLS USB 2.0 Driver .. 20
4.6 SLS Keypad Driver.. 20
4.7 SLS LCD Frame buffer Driver .. 20
4.8 JTAG UART Driver .. 21

5. User Applications .. 23
5.1 Flash and JFFS2 Application ... 23

5.1.1 Flash Tools... 23
5.1.2 Accessing Flash and JFFS2 Applications .. 23
5.1.3 Configuring Flash Partition ... 25

5.2 LCD and SD Card Application .. 25
5.2.1 Using LCD Frame Buffer Driver API.. 25
5.2.2 Viewing JPEG Images from SD Card.. 26

5.3 Adding New User Application... 27
5.4 Build New User Application Using SLS IP Drivers .. 28
5.5 Shell Commands .. 28

Introduction uClinux CoreCommander BSP

6. Configuring Network utilities and NFS (Client) .. 31
6.1 Configuring DHCP Client.. 31
6.2 Static IP Allocation .. 32
6.3 Mounting NFS on CoreCommander .. 32

6.3.1 NFS Server (Host) Set Up ... 32
6.3.2 NFS Client (CoreCommander) Setup .. 33

6.4 Configuring inetd, telnetd, ftpd Server .. 33
6.5 Configuring boa Server.. 34

7. Debugging Kernel and User Application.. 37
7.1 Debugging uClinux kernel using nios2-elf-insight over JTAG ... 37
7.2 Debugging User Application using gdbserver over Ethernet ... 38
7.3 Debugging User application using Eclipse IDE... 40

8. Demonstrations & Quick Reference.. 43
8.1 Demonstrations .. 43

8.1.1 Picview .. 43
8.1.2 ChatServer ... 45
8.1.3 PortInterface .. 47

8.2 Quick Reference .. 54
8.2.1 Prebuilt_zImage... 54

Appendix A. Ethernet Driver.. 57

Appendix B. SD Host Controller Driver.. 59

Appendix C. USB 2.0 Driver... 61

vi System Level Solutions

 uClinux CoreCommander BSP

System Level Solutions 1

1. Introduction
uClinux CoreCommander Board support package (BSP) provides developers the
easiest and fastest way to create embedded applications on the CoreCommander
board (target) using uClinux operating system. The hardware, firmware, and
software together form a complete package for building, downloading, and testing
applications developed on a host machine:
• Install the uClinux board support package (BSP) on the host PC
• Connect JTAG cable between host and target for JTAG communication
• Build custom Linux kernel for the CoreCommander board

When ready to see your application in action, just download it to the
CoreCommander board. Now you can test and debug the kernel and application.

1.1 Software
uClinux CoreCommander BSP is the combination of uClinux, IP core drivers and
applications developed by SLS Corporation. Current version of the BSP supports
Flash, SD Host Controller, Ethernet, and USB 2.0 IP.

uClinux is a port of Linux for MMU less processor. So many different
architectures are supported by uClinux. It has almost all necessary power as an
embedded operating system. This document is based on kernel version 2.6.28
Visit www.uclinux.org for more information.

1.2 Hardware
The following list summarizes the hardware featuers:

Target Hardware Board
• SLS CoreCommander Board, Cyclone III Edition

Device
• System name: sls_cc_bsp_hw_v10
• Family: Cyclone III
• Device: 3C25F256C8
• Total logic elements (LE) used: 12,965 / 24,624 (53%)
• Total pins used: 119 /157(76%)
• Total memory used: 138,080 / 608,256 (23%)

Processor
• Nios II/f processor core

• Nominal metrics: 113 DMIPS at 100 MHz, 1,400–1,800 LEs,
MMU/MPU option disabled

http://www.uclinux.org/

Introduction uClinux CoreCommander BSP

• 4-KByte data cache, 4-KByte instruction
• JTAG debug module for downloading software, 300–400 LEs

This BSP is targeted for Nios II. Nios II is a soft core FPGA processor. It is 32 bit
RISC general purpose processor. Nios II processor system is equivalent to a
microcontroller or “Computer on a chip” that includes a processor and a
combination of peripherals and memory on a single chip. The term “Nios II
processor system” refers to a Nios II processor core, a set of on-chip peripherals,
on-chip memory, and interfaces to off-chip memory, all implemented on a Single
Altera device. Like a microcontroller family, all Nios II processor systems use a
consistent instruction set and programming model.

Memory Interfaces
• Common flash interface (CFI) flash memory

• 8 Mbytes
• SDRAM Controller

• 32 Mbytes
• SD Host Controller IP, v2.4

Communication Interfaces
• SLS Ethernet 10/100 MAC v2.0
• JTAG UART with integrated read and write FIFO
• USB 2.0 Device IP Core (USB20HR), v2.3

Display Interfaces
• SLS "1.7" TFT LCD Interface

System Peripherals
• Timers/counters

• Interval timer
• 32-bit counter size, 1-ms time-out period

• 6 Keypad PIOs (input only)
• 2 LED PIOs (output only)
• System ID

If you wish to recompile the reference design, download the following IP cores
and interfaces:
• USB20HR IP Core
• SD Host Controller IP Core
• Ethernet 10/100 MAC IP Core
• 1.7” TFT LCD Interface

After downloading the IP Cores, get the license for each IP Core from
http://www.slscorp.com/pages/ipLicenseinfo.php and follow the instructions.

2 System Level Solutions

http://www.slscorp.com/pages/ipusb20hrsls.php
http://www.slscorp.com/pages/ip_sdhostcontroller.php
http://www.slscorp.com/pages/ipe_netsls.php
http://www.slscorp.com/download/lcd_intrfc-v1.0.exe
http://www.slscorp.com/pages/ipLicenseinfo.php

uClinux CoreCommander BSP uClinux CoreCommander BSP Development Environment

1.3 Development Platform Requirements
We assume that user is familiar with Altera tools. Following are development
platform requirements:
• Any Linux distribution having good hardware configuration with at least

2.5 GB free space.
• Altera Development Tools (v8.1)

This uClinux BSP is tested on Red Hat Fedora Core 7, OpenSUSE 10.3 and
Mandriva 2008 but it should work on other Linux Desktop distributions also. You
can build the kernel and application on Linux desktop only. Images built on Linux
can be downloaded and run on Windows if the Altera Development tools are
installed.

 This BSP will not work on Cygwin environment.

1.4 Setup
To startup and begin communicating with the board:

1. Establish communication between target (Board) and host (PC) using
JTAG cable.

2. Establish a network connection using RJ45 Ethernet cable to debug the
application. (Ethernet Add-on board is required)

3. Apply power to the CoreCommander board.

System Level Solutions 3

2. uClinux CoreCommander BSP Development
Environment
This chapter provides information to help setup the development environment for
the CoreCommander board.

2.1 CoreCommander BSP SOPC System
Figure 1 below shows the block diagram of CoreCommander BSP SOPC system.

Figure 1 : CoreCommander BSP SOPC System

2.2 Development Environment
Nios II embedded development environment consists of two systems: a host
system and a target system. Host system is used for compiling, linking, remote
debugging, and associated development activities. Target system, such as the
CoreCommander board, is used for application development and testing
(Figure 2). Board acts as a target for application development

System Level Solutions 5

uClinux CoreCommander BSP Development Environment uClinux CoreCommander BSP

Figure 2 : Development Environment

uClinux CoreCommander BSP Applications

RED HAT uClinux

Nios II

IP Cores

CoreCommander BSP SOPC
SystemHost

Target
CoreCommander Board

Ethernet

JTAG

2.2.1 CoreCommander BSP Components

Table below lists the components included in the uClinux CoreCommander BSP.
Component Description

kernel v2.6.28

gcc v3.4.6

Ethernet driver Included

Frame buffer driver Included

Keypad driver Included

SDcard driver Included

FLASH driver Included

JFFS2 support Included

VFAT support Included

NFS support Included

JPEG support Included

2.2.2 IP Address Used

Table below lists the IP address and port used throughout this document. It may
be different for your system. Please check your network settings before applying
any IP address.

6 System Level Solutions

uClinux CoreCommander BSP uClinux CoreCommander BSP Development Environment

IP Address Description
192.168.0.14 Development Target IP address

192.168.0.26 Development Host and NFS server IP address

192.168.0.205 Gateway IP Address

255.255.255.0 Gateway Mask

9999 TCP port

2.3 Development Host
Refer to the Red Hat documentation for Red Hat Fedora 7.0 core installation and
host setup information.

2.3.1 Downloading and Unpacking uClinux CoreCommander BSP

To download the uClinux CoreCommander BSP package visit:
http://slscorp.com/pages/ccbspdownload.php.

Now, follow the steps below to unpack the BSP package.

1. Copy the entire package in the home directory.

2. Apply su command to login as super user

 #su �

It will ask super user password for further process.

3. Issue

#cd /home �

#tar jxfv uClinux-2.1.1.1.tar.bz2 �

It starts extracting files and it may take some time.

4. Now go into uClinux directory using the following command

#cd /home/uClinux-2.1.1.1 �

 And then

#tar jxfv uClinux-dist.tar.bz2 �

It starts extracting files and it may take some time.

5. Now, issue

#cd Bintools �

#tar jxfv nios2gcc-20080203.tar.bz2 �

System Level Solutions 7

http://slscorp.com/pages/ccbspdownload.php

uClinux CoreCommander BSP Development Environment uClinux CoreCommander BSP

It starts extracting files and it may take some time.

6. Return to uClinux-2.1.1.1

#cd .. �

7. Issue command

#ls �

Here you will see nios2-linux, Bintools, and System-files.

2.3.2 Directory Contents

You have now successfully unpacked the BSP package. You will see following
directory structure:

Directory Description
uClinux-2.1.1.1 Contains nios2-linux, bintools (binary tool chain) and

system files. Users, interested only in software side can
start working with this directory.

Docs Contains BSP documents: uClinux CoreCommander
BSP user guide, CoreCommander reference manual and
boot_message.txt.

Demo Contains SLS uClinux CoreCommander Demos. In each
subdirectory you will find other necessary files.

Ref_design Contains Quartus archive project of SOPC system used
in this BSP.

Quick Reference Pre-built zImage for ready reference.

ReleaseNotes.pdf Contains CoreCommander BSP release notes.

2.4 Development Target

2.4.1 Configuring and Compiling uClinux

CoreCommander BSP has two main areas of configurations. Together they define
a complete uClinux platform configuration. These two areas include:

• Vendor / Product Settings
• Kernel Settings

In this section, you will learn all the above listed configurations.

Start Configuration Menu

To configure the kernel, go to the directory /home/uClinux-2.1.1.1/nios2-
linux/uClinux-dist and follow the steps below:

1. Open the Linux terminal.

8 System Level Solutions

uClinux CoreCommander BSP uClinux CoreCommander BSP Development Environment

2. On the terminal, change into the $home/uClinux-2.1.1.1/nios2-
linux/uClinux-dist directory and change the environment path. Use one
of the four main kernel configuration methods to start the configuration
menu.

#cd /home/uClinux-2.1.1.1/nios2-linux/uClinux-dist �

#PATH=$PATH:/home/uClinux-2.1.1.1/Bintools/opt/nios2/
bin �

4. Configure the kernel.

#make menuconfig �

You will see the kernel configuration main menu as shown in Figure 3.

Figure 3 : Linux Kernel Configuration Main Menu

Use one of the two main kernel configuration methods to start the
configuration.

 Use � or � arrow to select the menu item and then press � to go into
the submenu. Use  or � and then press � to select the menu
command <Select>, <Exit> or <Help> throughout the configuration.

Configuring Vendor/Product Settings

1. Select the submenu Vendor/Product Selection ---> from the Figure 3.
Press Enter. You will see Vendor/Product Configuration window. See
Figure 4.

System Level Solutions 9

uClinux CoreCommander BSP Development Environment uClinux CoreCommander BSP

Figure 4 : Vendor/Product Configuration Window

2. Select the following options:
• Vendor: Vendor (Altera)
• Target Product: Altera Products (nios2) ---->

3. Select <Exit>. You will return to kernel configuration menu Figure 3.

Configuring Kernel/Library/Defaults Settings

1. Select the option Kernel/Library/Defaults Selection ---> from the Kernel
Configuration Menu Figure 3. You will see the Kernel/Library/Defaults
Selection submenu as shown in Figure 5.

Figure 5 : Kernel/Library/Defaults Selection Window

2. Select Libc Version (None) ----> .You will see the as shown in Figure 6.

10 System Level Solutions

uClinux CoreCommander BSP uClinux CoreCommander BSP Development Environment

Figure 6 Libc Version Settings

3. Press Enter to select None.

4. Select <Exit>

5. Select <Exit>

6. You will be asked to save the kernel configuration. See Figure 7

Figure 7 : Save Option

7. Select <Yes> and press Enter.

You have now finished Kernel/Library/Defaults settings.

 DO NOT change any other settings until first successful boot.

8. You will be returned to Linux Terminal.

2.4.2 Set System.ptf

To generate a system header file using sls_cc_bsp_hw_v10_sopc.ptf located at
“/home/uClinux-2.1.1.1/System-files” directory, follow the steps below:

1. Type the following command and press Enter.

#make vendor_hwselect SYSPTF=/home/uClinux-2.1.1.1/
System-files/sls_cc_bsp_hw_v10_sopc.ptf �

You will be asked to select the CPU. See Figure 8

System Level Solutions 11

uClinux CoreCommander BSP Development Environment uClinux CoreCommander BSP

Figure 8 : CPU Selection

2. Enter the choice (1). It will ask to select a device to execute kernel from:
See Figure 9

Figure 9 : Select a Device to Execute Kernel From

5. To select SDRAM, enter:

 Selection:2

2.4.3 Customization of Kernel Settings

1. To customize the kernel settings, type on the terminal:

#make menuconfig �

12 System Level Solutions

uClinux CoreCommander BSP uClinux CoreCommander BSP Development Environment

Figure 10 : Linux Kernel Configuration Window

2. Select Kernel/Library/Defaults Selection and press Enter. More kernel
configuration settings will be displayed. See Figure 11.

Figure 11 : Customize Kernel/Library/Defaults Selection Window

3. Select Default all settings by pressing “Y”

4. Select <exit>.

5. Select <exit>

6. Select <yes> to save all changed settings.

Console asks you for board selection. Choose CoreCommander board option.
Further it will ask for including and excluding drivers and applications. Press N
for all these options.

System Level Solutions 13

uClinux CoreCommander BSP Development Environment uClinux CoreCommander BSP

2.4.4 Building uClinux zImage

Once you have configured the kernel, build uClinux Image by issuing following
command.

 #make �

It will take some time to build zImage file. After successful build, you will get
zImage (.elf file) at /home/uClinux-2.1.1.1/nios2-linux/uClinux-dist/image.

14 System Level Solutions

System Level Solutions 15

3. Downloading and Running zImage
zImage is one type of elf file which contains compressed kernel image and romfs
image. Given below are the steps for downloading and running zImage on the
CoreCommander board.

3.1 Running zImage on Linux Using JTAG UART Console
To run zImage on Linux, you should have Nios2 EDS installed on your PC with
environment variables properly set. We will use utilities from the Nios2 EDS.
1. Configure .sof.

#nios2-configure-sof /home/uClinux-2.1.1.1/System-
files/sls_cc_bsp_hw_v10.sof �

2. Open the terminal to download zImage.
#nios2-download –g /home/uClinux-2.1.1.1/nios2-linux/
uClinux-dist/images/zImage �

3. Run the following command.
#nios2-terminal �

Here you can see the message Linux booting on the same shell.

4. Configuring Device Drivers and File Systems
If more functions need to be supported on kernel, then before rebuilding the
kernel, it requires more kernel configuration. This session describes the procedure
to configure the kernel.

 To know more about the peripherals and hardware available on the
CoreCommander board, refer the CoreCommander board Getting Started User
Guide located at <CC BSP Installation Path>/Docs.

4.1 Board Selection
From the Customize Kernel Settings, select the following options.

Processor type and features --->

Platform (Default Board) --->

You will see the board selection options as shown in Figure 12. Select the
CoreCommander board option and press Enter.

Figure 12 : Board Selection

4.2 Flash Memory (MTD) Driver
To include the Flash Memory (Memory Technology Device) driver in
compilation, the following options should be enabled:

System Level Solutions 16

uClinux CoreCommander BSP Network Utility

 (0x8000000) Physical start address of flash
mapping (NEW)

 (0) Physical length of flash mapping (NEW)

 (2) Bank width in octets (NEW)

Device Drivers --->

[*] Memory Technology Devices (MTD) support --->

--- Memory Technology Device (MTD) support

[*] MTD partitioning support

[*] Direct char device access to MTD devices

[*] Caching block device access to MTD devices

RAM/ROM/Flash chip drivers --->

[*] Detect flash chips by Common Flash
Interface (CFI) probe

[*] Support for AMD/Fujitsu flash chips

Mapping drivers for chip access --->

[*] CFI Flash device in physical memory map

4.2.1 JFFS2 File System Configuration

JFFS2 is a log-structured file system designed for use on flash devices in
embedded systems. Rather than using a kind of translation layer on flash device to
emulate a normal hard drive, as is the case with older flash solutions, it places the
file system directly on the flash chips.

If you want to use JFFS2 file system on Flash Memory then you have to configure
both the Flash Memory driver and JFFS2 file system. First do the Flash Memory
Driver configuration as described above. And then follow the procedure below to
configure the JFFS2 File system.

File systems --->

Miscellaneous File systems --->

[*] Journaling Flash File System v2 (JFFS2)
support

(0) JFFS2 debugging verbosity (0 = quiet, 2 =
noisy)

[*] JFFS2 write-buffering support

System Level Solutions 17

Network Utilities uClinux CoreCommander BSP

4.3 SLS SD Host Controller Driver
To include the SD Host Controller Driver in compilation, following options
should be enabled:

Device Drivers --->
[*] MMC/SD/SDIO card support --->
 --- MMC/SD/SDIO card support
 *** MMC/SD/SDIO Card Drivers ***
 [*] MMC block device driver
 [*] Use bounce buffer for simple hosts
 [*] SLS SD Host Controller Driver

To know more about using SD Host Controller driver, refer Appendix B.

4.3.1 VFAT

Virtual File Allocation Table (VFAT) is the part of the Windows 95 and later
operating system that handles long file names, which otherwise could not be
handled by the original file allocation table (FAT) programming.

If you want to use VFAT file system on SD Card then you have to configure both
the SD Host Controller driver and VFAT file system. First do the SD Host
Controller Driver configuration as described above and then follow the procedure
below to configure the VFAT File system.

File systems --->

DOS/FAT/NT File systems --->

[*] MSDOS fs support

[*] VFAT (Windows-95) fs support

(437) Default codepage for FAT

(iso8859-1) Default iocharset for FAT

Native Language Support

18 System Level Solutions

uClinux CoreCommander BSP Network Utility

--- native language support

(iso8859-1) Default NLS Option

[*] Codepage 437 (United States, Canada)

[*] NLS ISO 8859-1 (Latin 1; Western European
Languages)

4.4 SLS Ethernet IP Driver
To include the SLS Ethernet IP Driver in compilation, following options should
be enabled:

Networking --->

--- Networking support

Networking options --->

[*] Packet socket

[*] Unix domain sockets

[*] TCP/IP networking

Device Drivers --->

[*] Network device support --->

[*] Ethernet (10 or 100Mbit) --->

[*] SLS MAC support

To know more about using Ethernet driver, refer Appendix A.

4.4.1 NFS

NFS is a network file system protocol originally developed by Sun Microsystems
in 1984, allowing a user on a client computer to access files over a network as
easily as if the network devices were attached to its local disks.

If you want to use NFS file system on Ethernet then you have to configure both
the Ethernet IP driver (as described above) and NFS file system. Follow the
procedure below to configure the NFS File system.

System Level Solutions 19

Network Utilities uClinux CoreCommander BSP

20 System Level Solutions

4.5 SLS USB 2.0 Driver
To include SLS USB 2.0 ULPI support in compilation, follow the steps below:

To know more about using USB 2.0 driver, refer Appendix C.

4.6 SLS Keypad Driver
To include SLS Keypad driver in compilation, follow the steps below:

4.7 SLS LCD Frame buffer Driver
To include the SLS LCD Frame buffer Driver in compilation, following options
should be enabled:

Device Drivers --->

Graphics support --->

[*] Support for frame buffer devices --->

 [*] SLS FrameBuffer Driver Support

File systems -->

[*] Network File Systems -->

 --- Network File Systems

[*] NFS client support

[*] NFS client support for NFS version 3

Device Drivers --->

 Character devices --->

[*] SLS USB20 ULPI support

Device Drivers --->

 Character devices --->

[*] SLS Keypad Driver Support

uClinux CoreCommander BSP Network Utility

4.8 JTAG UART Driver
To include the JTAG UART Driver in compilation, make sure that following
options are enabled:

If you want to bypass the JTAG, then select the following options.

Serial drivers --->

[*] Altera JTAG UART support

[*] Altera JTAG UART console support

Device Drivers --->

Character devices --->

Serial drivers --->

[*] Altera JTAG UART support

[*] Altera JTAG UART console support

[*] Bypass output when no connection

Device Drivers --->

Character devices --->

 If you are using the bypass JTAG option then application should not have any
printf statements.

System Level Solutions 21

5. User Applications
Using the User Applications you can access the drivers, file systems and
peripherals available on the board. This chapter describes the following user
applications.

5.1 Flash and JFFS2 Application
To access Flash and JFFS2 application, include its driver and file system as
described in the section: Flash Memory (MTD) Driver and JFFS2 File System
Configuration.

5.1.1 Flash Tools

Select Customize Application/Library Settings>Flash tools to select the Flash
tools. Select the following Flash Tools.

System Level Solutions 23

 Before compiling the Flash Tools, make sure that the lzo-devel library is installed
on your linux PC.

Flash Tools --->

--- MTD utils

[*] mtd-utils

[*] erase

[*] eraseall

[*] lock

[*] unlock

[*] mkfs.jff2

Build the kernel as explained in the section Development Target.

5.1.2 Accessing Flash and JFFS2 Applications

To access the Flash and JFFS2 in your application use the required commands as
described in the table below:

Network Utilities uClinux CoreCommander BSP

Command Description
cat /proc/mtd Displays flash partitions.
cat /proc/mounts Displays already mounted files.
ls -l /dev/mtd* Lists mtdblocks and other details.

unlock /dev/mtdx

Unlocks all the sectors of mtd device. e.g.:
unlock /dev/mtd0, this will unlock all sectors
in mtd device0.

flash_erase device offset
number_of_blocks

Erases number of blocks of a device
starting from the given address.

e.g. : flash_erase /dev/mtd0 0x00000 5
.This command would erase 5 blocks of
mtdblock0 starting from the offset address
0x00000.

flash_eraseall /dev/mtdx

Erases all the contents of mtd device.

e.g. : flash_eraseall /dev/mtd0. This would
erase all the content from mtd device 0.

Note: here mtd0 means mtd device0 and
not mtdblock0. If you are not able to erase
the content and get the message “read
only file system” then use the unlock
command mentioned above and after that
use eraseall.

mount -t jffs2 dev/mtdblockx /mnt

Mounts mtdblockx partition on the /mnt
directory. You can also use other directory
than /mnt
e.g. : mount –t jffs2 /dev/mtdblock2 /mnt

This would mount mtdblock2 on the mnt
directory.

Note: Erase entire flash before mounting
JFFS2 file system.

mkdir new Creates a new directory
cp /new /dev/mtdx Copies a new directory to mtdx.

e.g. : cp /new /dev/mtd0
lock /dev/mtdx

Locks all sectors of the mtd device.
e.g. : lock /dev/mtd0

This would lock all sectors of mtd device0.

Note:
(1). Where x=0, 1, 2.. mtd device or mtdblocks in the system.

(2). By default sectors of flash device are locked. So you can not write anything before
unlocking the flash device. Use unlock command to write on flash device.

24 System Level Solutions

uClinux CoreCommander BSP Network Utility

5.1.3 Configuring Flash Partition

To configure the flash partition, either you can create your own mapping driver or
modify the partition with config.c file. Here config.c is the mapping driver for
mtd device. It is located at <path_to_dist>/linux-2.6/arch/nios2/kernel.

5.2 LCD and SD Card Application
To access the LCD and SD Card applications, select necessary drivers and file
systems for SD Card and LCD as mentioned in the SLS SD Host Controller
Driver, VFAT and SLS LCD Frame buffer Driver

5.2.1 Using LCD Frame Buffer Driver API

Using LCD Frame buffer driver API you can draw a drawing on the
CoreCommander LCD. SLS has provided the sample drawing. To view the
drawing select following:

Miscellaneous Applications --->

[*] sls_gui

Aftter making above selection apply make command and download the zImage,
Apply following command on the nios terminal.

/>sls_gui �

You will see following drawing on the CoreCommander board.

Figure 13 : Drawing using LCD Frame Buffer API

System Level Solutions 25

Network Utilities uClinux CoreCommander BSP

5.2.2 Viewing JPEG Images from SD Card

Before going further, copy .jpg images from your PC in to the SD Card and make
following selection.

---video tools

[*] jpegview

Miscellaneous Applications --->

1. To mount the SD Card on mnt directory, issue the following command on
the target when the system is up and running.

/>mount -t vfat /dev/mmcblk0 /mnt �

 Sometimes, when the user uses this command on the console, it is
failed to mount and returns with the following error message.

FAT: bogus number of reserved sectors

VFS: Can't find a valid FAT file system on dev SLS_SD

This is due to the problem in the file system formatted on the SD Card,
which is supported in windows but is not supported in uClinux. To solve
this problem, please download Quick Reference.

Prebuilt_zImage directory contains following files:
• zImage
• sls_cc_bsp_hw_v10.sof
• Readme.txt

Download .sof and zImgae respectively. You will get console on JTAG
UART. When zImage is up and running, plug the SD card into the
CoreCommander socket. Issue the following command to format the SD
card.

/>mkdosfs –I –F 16 /dev/mmcblk0 �

After formatting the SD card, you have to copy the JPG file from your PC
through card reader in the CoreCommander board. Once again mount the
SD card with VFAT file system.

2. Go to the mnt directory and see the contents of the SD card by issuing the
following command.

/>cd mnt �

/mnt>ls �

You will see on the console, the list of images contained in the SD card.

1.jpg

26 System Level Solutions

http://www.slscorp.com/pages/ccbspdownload.php

uClinux CoreCommander BSP Network Utility

2.jpg

3.jpg

3. View the images contained in the SD card on the CoreCommander LCD
by issuing the following command.

/mnt>jpegview -s1 –f 1.jpg 2.jpg 3.jpg �

5.3 Adding New User Application
This section explains you about adding a user application named hello in uClinux.
Follow the steps below to add a new user application.

1. Create hello directory in the /home/uClinux-2.1.1.1/nios2-
linux/uClinux-dist/user directory.

2. Copy source file (.C file) to the hello directory

3. Add the configuration variable hello to the user/Kconfig file:

config USER_HELLO
bool "hello"
help
help_words_here.....

This adds the hello menu option to the userland configuration menu.

4. Add following lines to the user/Makefile to add the hello directory in
compilation.

...

dir_$(CONFIG_USER_HELLO) += hello
...

5. Create the Makefile under user/hello directory as mentioned below to
compile the hello application.

EXEC = hello

OBJS = hello.o

all: $(EXEC)

$(EXEC): $(OBJS)

$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $(OBJS) $(LDLIBS)

romfs:

$(ROMFSINST) /bin/$(EXEC)

clean:

-rm -f $(EXEC) *.elf *.gdb *.o

System Level Solutions 27

Network Utilities uClinux CoreCommander BSP

6. Build the kernel with this application and issue the following command to
view the output of this application.

/>hello �

Here, you will see the output of your application.

5.4 Build New User Application Using SLS IP Drivers
To build a new user application using SLS IP drivers refer Appendix A,
Appendix B, Appendix C.

5.5 Shell Commands
Using shell commands you can perform operations on uClinux running on the
CoreCommander board. Shell is the basic application on the Linux system.
Default shell provided in BSP is “sh”. “sh” uses the current directory as the
prompt string. Commands can be executed under shell. (It works the same way as
Linux PC). Help command will display internal commands provided by shell.

Table below lists the useful shell commands:
Command Definition Description
cat cat filename Shows file on screen

cd cd [directory] Changes current directory

chgrp chgrp GROUP FILE… Changes the group membership of each
FILE to GROUP

chmod chmod mode file/dir Changes file/directory mode

chown chown group:user file/dir Changes file/directory own

cmp cmp file1 file2 Compares two files

date date

[MMDDhhmm[YYYY]]

Get/set date

cp cp file1 file2 Copy source to destination

df

df [device] Shows information about the filesystem on
which each FILE resides, or all filesystems
by default

echo echo arguments [>filename] Outputs the ARGs or redirect to file

exec exec file Exec FILE, replacing this shell with the
specified program

exit exit [N] Exits the shell with a status of N. If N is
omitted, the exit status is that of the last
command executed

free free Shows memory status

help help Shows help message

28 System Level Solutions

uClinux CoreCommander BSP Network Utility

hexdump hexdump file Hex dump file

hostname hostname Shows host name

Kill kill [-s sigspec | -n signum |
-sigspec] [pid | job]…\n or
kill -| [sigspec]

Sends signal to process

In ln –s file1 file2 Creates a link to the specified TARGET

Is ls [options] List information about the FILES

mkdir mkdir dirname Creates the DIRECTORY

mknod mknod type major minor Creates device file

more more filename File perusal filter

mount mount –t type device dir Mount file system

mv mv source dest Rename SOURCE to DEST, or move
SOURCE(S) to DIRECTORY

printenv printenv Print environment variables

pid pid Shows current process

ps ps Shows process information

pwd pwd Shows current directory

quit quit Quits current process

rm rm file Removes file

rmdir rmdir dir Removes dir

sleep sleep number sleeps several seconds

setenv setenv var value Sets environment variable

source source file Runs command in file

sync system sync sync

touch touch [option] file Update the access and modification times
of each FILE to the current time

umask umask octal number user file-creation mask is set to MODE

umount umount dir Umount file system

System Level Solutions 29

6. Configuring Network utilities and NFS (Client)
This chapter introduces you about the various network utilities like ftp, dhcpcd,
telnet, boa, and inetd. Before going further, follow all the steps for Ethernet driver
as described in the section SLS Ethernet IP Driver.

6.1 Configuring DHCP Client
1. Select Customize Application/Library Settings. Do the following

settings for Network Application and Busybox.

System Level Solutions 31

2. Configure the IP address of the board dynamically (automatically) by
issuing the following command on the target.

/>dhcpcd �

3. Issue following command on the target to know the IP address received
from the above command and Ethernet port configuration.

Network Applications ---->

[*] dhcpcd-new (2.0/2.4)

BusyBox ---->

[*] Busybox

Networking Utilities ---->

[*] ifconfig

[*] Enable status reporting output (+7k)

/>ifconfig �

You will find IP assigned to your board.

4. Ping your board from the host with the IP address (xx.xx.xx.xx) that you
received from step 3.

#ping xx.xx.xx.xx �

 Make sure that DHCP server is available in your network and there is
enough space for new IP allocation.

Debugging Kernel and User Application uClinux CoreCommander BSP

6.2 Static IP Allocation
To configure the static IP, make the following settings:

To allocate static IP to the board, issue the following command on the target.

BusyBox ---->

[*] Busybox

Networking Utilities ---->

[*] ifconfig

[*] Enable status reporting output (+7k)

/>ifconfig eth0 192.168.0.14 �

6.3 Mounting NFS on CoreCommander
Before mounting NFS on CoreCommander, select the options as mentioned in
SLS Ethernet IP Driver and NFS. Then go to the user application and select the
following.

BusyBox --->

[*] BusyBox

Linux System Utilities --->

[*] mount

[*] Support mounting NFS file systems

Networking Utilities --->

[*] ifconfig

[*] Enable status reporting output (+7k)

Now build the kernel.

6.3.1 NFS Server (Host) Set Up

To set up the NFS server, follow the steps below:

1. Login as a super user on the host pc in your network.

2. Create a directory called nfs in the /home directory.

#mkdir /home/nfs �

32 System Level Solutions

uClinux CoreCommander BSP Debugging Kernel and User Applications

3. Edit the file named exports under /etc directory and add the following
line:

/home/nfs 192.168.0.0/255.255.255.0(sync,no_root_squash,rw)

 This setting may differ as per your network

4. Restart NFS server.

#service nfs restart �

5. Verify it by issuing the following command.

#showmount –e �

6.3.2 NFS Client (CoreCommander) Setup

When the zImage is up and running, issue the following command:

/>mount -t nfs -o nolock 192.168.0.26:/home/nfs /mnt �

After successful mounting, you can access the /home/nfs directory on the NFS
server (host PC) using /mnt directory on the NFS client (CoreCommander board).

6.4 Configuring inetd, telnetd, ftpd Server
To configure inetd, telnetd, and ftpd follow the steps below:

1. First of all follow all steps for Ethernet driver as mentioned in SLS
Ethernet IP Driver.

2. When the kernel is up and running, issue the following command on
console:

 />inetd & �

Network Applications ---->

[*] ftpd

[*] inetd

[*] telnetd

This would run inetd server in the background which in turn will run the
telnet and ftp server.

3. Now connect FTP client on Host PC to the server running on the board.
Here board IP is configured as 192.168.0.14 so issue following command
on the Host PC.

System Level Solutions 33

Debugging Kernel and User Application uClinux CoreCommander BSP

#ftp 192.168.0.14 �

You will see the following on the host terminal. Enter the ftp user name
and password.

Connected to 192.168.0.14

220- Welcome to the uClinux ftpd!

220 uClinux FTP server (GNU inetutils 1.4.1)ready

User (192.168.0.14 :(none)): ftp

331 Guest login ok, type your name as password.

Password: �

230 Guest login ok, access restrictions apply.

ftp>

4. Now connect Telnet client on the Host PC to the server running on the
board. Here board IP is configured as 192.168.0.14 so issue following
command on the Host PC.

#telnet 192.168.0.14 �

You will see the following on the host terminal.

uClinux login: root
Welcome to
 ____ _ _
 / __| ||_|
 _ _| | | | _ ____ _ _ _ _
 | | | | | | || | _ \| | | |\ \/ /
 | |_| | |__| || | | | | |_| |/ \
 | _______|_||_|_| |_|____|_/_/
 | |
 |_|

For further information check:
http://www.uclinux.org/

Sash command shell (version 1.1.1)
/>

6.5 Configuring boa Server
To configure the boa server on the board, follow the steps below:

1. Make the following selection.

34 System Level Solutions

uClinux CoreCommander BSP Debugging Kernel and User Applications

[*] Customize Vendor/User Settings (NEW) ---->

Network Applications ---->

[*] boa

2. Issue the following command on the target.

 />boa & �

3. On the Host PC, go to your web browser and type board_ip in the address
bar. uClinux default webpage opens.

System Level Solutions 35

7. Debugging Kernel and User Application
To debug the user application you will require following software and hardware:

• Cross/Straight Network cable
• JTAG cable
• Eclipse IDE for C/C++ developers. You can download Eclipse

IDE from:
http://www.eclipse.org/downloads/download.php?file=/technology/epp/downlo
ads/release/20071103/eclipse-cpp-europa-fall2-linux-gtk.tar.gz

7.1 Debugging uClinux kernel using nios2-elf-insight over
JTAG
To debug the uClinux kernel using nios2-elf-insight over JTAG, first build the
zImage by using the following steps:

Before debugging, configure the kernel as explained below:

#make menuconfig �

Menu configuration window opens:

System Level Solutions 37

Kernel hacking ---->

[*] Kernel debugging

[*] Compile the kernel with debug info

Save, exit and build the zImage.

Following are the steps to debug the uClinux kernel using JTAG.

1. Download .sof file to your board using command:

#nios2-configure-sof /home/uClinux-2.1.1.1/System-
files/sls_cc_bsp_hw_v10.sof �

2. Go to /home/uClinux-2.1.1.1/nios2-linux/uClinux-dist/linux 2.6.x .You
will find vmlinux. Copy and paste it in same directory with the name
vmlinux.elf.

3. Now there will be a debug script called nios2-debug in NIOS II IDE. The
script is located at <altera_tools_installation_path>/nios2eds/bin.

4. Modify the script to make it compatible with uClinux kernel. Save a copy
of this script before modifying it and change line no 70 in nios2-debug
from :

http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/20071103/eclipse-cpp-europa-fall2-linux-gtk.tar.gz
http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/20071103/eclipse-cpp-europa-fall2-linux-gtk.tar.gz

Debugging Kernel and User Application uClinux CoreCommander BSP

break *main

to

break *start_kernel

5. Issue the command:

#nios2-debug home/uClinux-2.1.1.1/nios2-linux/uClinux-
dist/linux2.6.x/vmlinux.elf �

 Wait for few seconds and following window will be opened.

Figure 14 : main.C

Now you can debug easily with the aid of GUI. You can set the break point, check
the content of registers and also see the assembly code.

 When you want to perform kernel debugging then only use the modified script
otherwise use the default script.

7.2 Debugging User Application using gdbserver over Ethernet
Insight is the GUI of gdb debugger. Often it’s not easy to remember the debug
Command. Therefore insight provides the graphical interface so user can debug
easily. Aim of the document is to explain how to debug user space application.
Steps are mentioned below:

38 System Level Solutions

uClinux CoreCommander BSP Debugging Kernel and User Applications

For debugging user application over ethernet you should have proper zImage .To
build zImage, refer the section SLS Ethernet IP Driver.

Here is the example of simple helloworld.c program for debugging:

1. Select gdbserver (old) in menuconfig under user application
miscellaneous application.

2. Select the ifconfig utility in your busybox.

3. On your Host PC, set environmental variable “PATH” to toolchain with
the following command:

#PATH=$PATH:/home/uClinux-2.1.1.1/Bintools/opt/
nios2/bin �

#export PATH �

4. Compile the application with debug symbols and no optimization on your
host PC, Here is helloworld.c example. Your current working directory
should have this .c file.

#nios2-linux-uclibc-gcc -g helloworld.c -o helloworld
-elf2flt �

This will generate Helloworld and Helloworld.gdb files in your current
working directory. Copy the generated Helloworld to romfs/bin in
uClinux-dist directory.

5. Build the image, download it to the target and configure the Ethernet IP,
192.168.0.14 through the following command

/>ifconfig eth0 192.168.0.14 �

Then start the gdbserver listening on an unused port eg. 9999, with
command:

6. Apply the command given below:

/> gdbserver localhost:9999 /bin/Helloworld �

7. It will display,

Process /bin/Helloworld created; pid = 20

Listening on port 9999

8. Next, on your Linux PC, in the hello source directory, run insight gdb,

#nios2-linux-uclibc-insight Helloworld.gdb �

9. A source window will open and display the source Helloworld.c.

System Level Solutions 39

Debugging Kernel and User Application uClinux CoreCommander BSP

10. Open a gdb console with View>Console, enter gdb command in this
window.

gdb>target remote 192.168.0.14:9999 � (board_ip:9999)

11. It will report the target address of the program. Now you can set break
points and debug. On the target you can see the message: Remote
debugging from host IP, here you will see your IP (Host IP) address.

gdb> b main � (insert break point at main)

gdb> c � (continue)

12. Now you can debug via command or through GUI of insight. Insight GUI
is quite easy to understand. If you want to use command then you can use:

gdb> s � (for single stepping)

gdb> r � (to run program)

7.3 Debugging User application using Eclipse IDE
To debug the user application, follow the steps below.

1. Follow all steps mentioned in Ethernet driver selection, from Configuring
Device Drivers and File Systems.

2. Build the uClinux kernel by selecting

3. Open the terminal. Change directory to the Eclipse IDE folder

4. Write the command on the terminal to open the Eclipse IDE.

#./eclipse �

User application ---->

miscellaneous application ---->

[*] gdbserver(old).

5. Type workspace to choose your workspace.

6. Select File>New>C project to Create a new project.

7. Enter Helloworld as your Project name.

8. Project types, executable, Hello world ANSI C Project, (or empty project
and add your source).Finish.

40 System Level Solutions

uClinux CoreCommander BSP Debugging Kernel and User Applications

9. Now, setup for nios2 tool chain in Eclipse IDE on the host by following
the steps below:

a) Select the project Helloworld under Project Explorer.
b) Right click on Helloworld and select Properties. Project properties

dialog box opens.
• Select Settings>GCC C Compiler under C/C++ build. Make

following settings:
• Command: nios2-linux-uclibc-gcc
• All options: -O0 -g -Wall -c -fmessage-length=0

• Click Apply.
• Select Settings>GCC C Linker under C/C++ build and make

following settings
• Command: nios2-linux-uclibc-gcc
• All Options: -elf2flt

• Select Miscellaneous under GCC C Linker
• Linker flags: -elf2flt

• Click Apply

c) Select Run/Debug Settings under Project properties. Run/Debug
settings dialog box opens

• Click on New button. Select Configuration Type dialog box
opens

• Select C/C++ Local application.
• Click OK. Properties for new Configuration dialog box opens.
• Under Main tab do the following settings:

• Browse the Helloworld project under project.
• Type Debug/Helloworld.gdb

• Select Debugger tab. Make following settings
• Debugger: gdbserver Debugger

• Under Main tab of Debugger options make following settings
• GDB Debugger: nios2-linux-uclibc-gdb

• Under Connection tab
• Type: TCP
• Host name or IP address: 192.168.0.14 (IP address of

CORECOMMANDER board)
• Port Number: 9999 (you can give any number)

• Click Apply and click OK. You have finished setting of
run/debug settings.

• Click Apply and click OK. This finishes project properties
settings.

d) Select Project>Build Configuration>Build>All to build your project.
• Select workspace>Helloworld>Debug>Helloworld and copy

the file into /uclinux-dist/romfs/bin.

System Level Solutions 41

Debugging Kernel and User Application uClinux CoreCommander BSP

e) Build the zImage as explained in early section.

f) Click OK.

10. Now, select Project-->Build project to compile your project.

11. Copy from your workspace/Helloworld/Debug/Helloworld to romfs/bin
in uClinux-dist and build the zImage as explained earlier.

12. Configure the SOF on your board and download the zImage.

13. Kernel starts booting. After successful booting, configure the IP address of
the board (same as entered in the Eclipse IDE). Here IP is: 192.168.0.14

/>ifconfig eth0 192.168.0.14 �

14. Now issue the command:

/>gdbserver localhost: 9999 /bin/Helloworld �

15. It will display:

Process /bin/Helloworld created; PID = 20
Listening on port 9999

16. Now move to the IDE on host.

a) Select Run>Open Debug Dialog
• Select Helloworld as Debug application

• C/C++ Application: Debug/Helloworld.gdb
• Click Apply.
• Click Debug.

b) If there is no error then debug perspective opens and it will establish a
connection with the board. You will see the following message on the
target.

remote debugging from: 192.168.0.26 (your host ip)

17. Now you can debug easily with the help of step into/step over feature of
IDE.

42 System Level Solutions

System Level Solutions 43

8. Demonstrations & Quick Reference
Download Demonstrations and Quick Reference from
http://slscorp.com/pages/ccbspdownload.php.

8.1 Demonstrations
This demo package contains following applications:

• Picview
• ChatServer
• Portinterface

Following section explains how to run each application on the CoreCommander
board.

8.1.1 Picview

Picview is a Video and SD Host Controller based application for
CoreCommander board to display JPEG images and play MPEG files on LCD.

Picview directory contains following folders and files:
• SDCard_Contents
• CIII_zImage_Picview
• CIII_zImage_Picview.bat
• CIII_zImage_Picview_sh
• sls_cc_bsp_hw_v10.sof
• Readme.txt

Before going further, please refer Readme.txt.

Running Picview Application

Before running Picview application, make sure that SD Card contains JPEG and
MPEG files at \CC_Applications\JPEG_MPEG_Viewer directory.

To run the Picview application, follow the steps below:
4. Plug the SD card into the socket (CoreCommander board).
5. Run CIII_zImage_Picview.bat file. You will see booting uClinux on JTAG

UART console. When the zImage is up and running, you will see the Home
page as shown in Figure 15 on the CoreCommander board.

http://slscorp.com/pages/ccbspdownload.php

Demonstrations uClinux CoreCommander BSP

Figure 15 : Picview Application Running on CoreCommander Board

Table below lists the keys and its description:
Key Description

JPEG Viewer Pressing this key displays list of JPEG files in the SD
Card on the CoreCommander LCD.

MPEG Viewer Pressing this key displays list of MPEG files in the SD
Card on the CoreCommander LCD.

Up Moves up in the list of JPEG/ MPEG files

Down Moves down in the list of JPEG/MPEG files

Play/Pause Plays or pauses JPEG / MPEG files.

Home Returns back to home page or stops playing MPEG file.

6. Press JPEG/MPEG viewer key.
7. You will see the list of JPEG/MPEG files on LCD. See Figure 16.
Figure 16 : JPEG File List

8. Press Enter key. It will display the selected JPEG/MPEG file on LCD. See

Figure 17.

44 System Level Solutions

uClinux CoreCommander BSP Debugging Kernel and User Applications

Figure 17 : Displaying JPEG Files

9. Now press Up and Down key to view previous and next JPEG/MPEG files.
10. Press Home key to go home page.

8.1.2 ChatServer

A chat server application allows users to transfer real time text between two or
more client computers connected in the network.

ChatServer directory contains following files.
• CIII_zImage_eth0
• CIII_zImage_eth0.bat
• CIII_zImage_eth0_sh
• Readme.txt
• sls_cc_bsp_hw_v10.sof

Before going further, please refer Readme.txt.

Running ChatServer Application
1. Mount the GPIO Connector (J7) of the Ethernet Add On board to the GPIO

header (J4) of the CoreCommander board. See Figure 18.
2. Plug the Ethernet cable to the Ethernet connector on the Ethernet Add on

board.
3. Run CIII_zImage_eth0.bat file, you will see booting uClinux on JTAG

UART console. When the zImage is up and running, the board is configured
as a chat server.

4. Now any computer in the network can connect with chat server and
communicate with each other.

5. CoreCommander LCD displays startup screen as shown in Figure 18.

System Level Solutions 45

Demonstrations uClinux CoreCommander BSP

Figure 18 : CoreCommander Board Startup Screen Running ChatServer Appl.

6. Open any browser on client machine connected in the same network where the

CoreCommander board is connected.
7. Type IP address of chat server in the URL bar and press Enter.
8. You will see the chat sever main page in the browser window. See Figure 19.
Figure 19 : Chat Server Application Running on Client Machine

9. Now click on uClinux based chat server.
10. Chat application window opens in browser. See Figure 20
11. You will see the IP addresses of all client machines connected to the chat

server See Figure 20
12. To chat with the client machine, select IP address of the client machine.
13. Type the message you want to send to the selected client machine in the Send

Message Text box.
14. Received message area displays all messages.

46 System Level Solutions

uClinux CoreCommander BSP Debugging Kernel and User Applications

Figure 20 : Running Chat Server

8.1.3 PortInterface

PortInterface application is designed for reading, writing and verifying data on
USB 2.0 device.

Figure 21 displays directory structure of PortInterface application.

Figure 21: PortInterface Application Directory Structure

Table below gives description of directory contents.
Directory Description

Linux Contains Port Interface application files for Linux

 Drivers Contains USB 2.0 driver

 Host_Application Contains Port Interface application for Host PC

 CIII_zImage_USB20 zImage file

 Readme.txt Readme file for running zImage and .sof file

System Level Solutions 47

Demonstrations uClinux CoreCommander BSP

 sls_cc_bsp_hw_v10.sof .sof file

Windows Contains Port Interface application files for
Windows

 Drivers Contains USB 2.0 driver

 Host_Application Contains Port Interface application for Host PC

 Batch_File Batch file to run zImage

port-interface.c Portinterface application source code for
CoreCommander board

Reading/Writing/Verifying Data From/to the USB 2.0 Device on Linux PC

Installing USB2.0 device driver on Linux PC

To install USB2.0 device driver, follow the steps below:
1. Copy the file SLSUSB.ko to /lib/modules/kernel version/ directory.
2. Open the terminal and run depmod command to register your driver into

modules.dep file.

To confirm the USB2.0 device driver installation, follow the steps below:
1. Open the modules.dep file. You will find the path of SLSUSB.ko file there.
2. Attach a device supported by this driver and check the /dev directory. It

should be there with the name of SLSUSB0.

Downloading and Running zImage
1. Open the Linux terminal.
2. Download and run the CIII_zImage_USB20 on the CoreCommander board.

You will see the Linux terminal window as shown in Figure 22. Keep this
terminal open.

 To know how to communicate with the device using uClinux USB driver, refer
the port_interface.c file located at /PortInterface directory

48 System Level Solutions

uClinux CoreCommander BSP Debugging Kernel and User Applications

Figure 22 : Linux Terminal running zImage

Running PortInterface Host Application

To run the PortInterface Host application, follow the steps below:
1. Open another Linux terminal.
2. Browse to the directory PortInterface/Linux/Host_Application/. You will

find PortInterface file.
3. Issue the following command:

./PortInterface �

4. You will see the device description. See Figure 23.

System Level Solutions 49

Demonstrations uClinux CoreCommander BSP

Figure 23 : Linux Terminal Running PortInterface Host Application

5. It prompts for choice (1. Read, 2. Write).
6. Type 2 to write data on USB device.
7. It again prompts for the filename which you want to write. Make sure that the

file should be present in the host application directory.
8. It starts writing data from the file to the device. You will see the result on

Linux terminal as shown in Figure 24
9. After writing data, again it prompts for choice (1. Read, 2. Write).
10. Now type 1 to read data from the device.
11. Type the file name on which you want to write the read data from the device.
12. New file will be created with the given name at the same directory.
13. Verify both files.
14. Final view of both the terminals will be as shown in Figure 24.

50 System Level Solutions

uClinux CoreCommander BSP Debugging Kernel and User Applications

Figure 24 : Final View of Nios Terminal and Linux Terminal

Reading/Writing/Verifying Data from/to the USB 2.0 Device on Windows PC

Downloading and Running zImage for Windows

Run CIII_zImage_USB20.bat file. After successful downloading of zImage you
will see the Startup screen as shown in Figure 25.

Figure 25 : CoreCommander board Startup Screen Running PortInterface Appl.

If the USB 2.0 driver is not installed on your PC then New Hardware Found
Wizard will be displayed.

System Level Solutions 51

Demonstrations uClinux CoreCommander BSP

To install the USB 2.0 driver follow the steps below:
1. Follow the onscreen installation instructions; choose default options.
2. While asking to select the device driver, browse to the directory

\PortInterface\Windows\Drivers.
3. Click Finish to finish the installation.

 To know how to communicate with the device using uClinux USB driver, refer
the port-interface.c file located at \PortInterface directory.

Running Host Application on Windows PC
1. If the Microsoft Visual Studio 6.0 is not installed on your PC then run

USB_RW.exe located at \PortInterface\Windows\Release. If the Microsoft
Visual Studio 6.0 is installed on your PC, then double-click on USB_RW.dsw
located at \PortInterface\Windows\Host_Application. It opens the host
application project. Run the host application from Visual Studio.
If the device is not properly connected, you will see the following message in
the window. See Figure 26.

Figure 26 : Running Host Application when USB Device is not connected

If the device is properly connected you will see the following message in the
window.

52 System Level Solutions

uClinux CoreCommander BSP Debugging Kernel and User Applications

Figure 27 : Running Host Application when Device is connected

2. It prompts for choice (1. Read, 2. Write).
3. Type 2 to write data on USB device.
4. It again prompts for the filename which you want to write. Make sure that the

file should be present in the host application directory.
5. It starts writing data from the file to the device. You will see the result on

Nios terminal. See Figure 28.
6. After writing data, again it prompts to exit from the application. Select N.
7. Again, it prompts for choice (1. Read, 2. Write).
8. Type 1 to read data from the device.
9. Type the file name on which you want to write the read data from the device.
10. New file will be created with the given name at the same directory.
11. Verify both files.
12. Final view of both the terminals will be as shown in Figure 28 below:

System Level Solutions 53

Demonstrations uClinux CoreCommander BSP

Figure 28 : Final View of Nios Terminal and Host Application Running on Windows

 If you want to make your own zImage using given .c files in the PortInterface
directory, you need to modify the sls_cc_bsp_hw_v10_sopc.ptf file and
recompile uClinux by referring Set System.ptf.

Follow the steps below to modify the .ptf file:
1. Modify the following code at line no 2629

 Address_Span = "33554432";

With

 Address_Span = "16777216";

2. Modify the following code at line no 2638
 Address_Width = "24";

 With

 Address_Width = "23";

8.2 Quick Reference
Quick Reference gives you quick overview of the applications explained in
chapter 5 and 6. When you extract Quick Reference, you will find following
directory:

• Prebuilt_zImage

8.2.1 Prebuilt_zImage

Prebuilt_zImage directory contains following files:

54 System Level Solutions

uClinux CoreCommander BSP Debugging Kernel and User Applications

• zImage
• sls_cc_bsp_hw_v10.sof
• readme.txt

Before going further, please refer the readme.txt.

SD Card Formatting

Download .sof and zImage. You will get console on JTAG UART. When the
zImage is up and running, plug the SD card into the socket (CoreCommander
board). Issue the following command to format the SD card.

/>mkdosfs –I –F 16 /dev/mmcblk0 �

Other Applications

zImage given here is a ready reference to test all applications explained in chapter
5 and 6. See User Applications and Configuring Network utilities and NFS
(Client) for more details. Using this zImage you can only explore some of the
capabilities of BSP.

System Level Solutions 55

System Level Solutions 57

Appendix A. Ethernet Driver
As kernel can only access Ethernet driver, there is not any specific API
to access Ethernet driver. There are different ways to allocate an
Ethernet interface to the driver.

To allocate Ethernet interface to the driver, you have to configure the
interface. Once the interface is configured, user can send/receive
packets into the network.

To allocate an Ethernet interface to the driver, use ifconfig utility.

Example:

/>ifconfig eth0 192.168.0.14 multicast

ETH0: Registered SLS MAC interrupt 5

Above example uses Ethernet driver interface eth0 with IP number
192.168.0.14. To verify interface settings, use ifconfig utility.

Example:

/>ifconfig

eth0

Link encap: Ethernet HWaddr 12:12:12:12:12:12

inet addr:192.168.0.14 Bcast:192.168.0.255
Mask:255.255.255.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:76 errors:4 dropped:0 overruns:0
frame:8

TX packets:0 errors:0 dropped:0 overruns:0
carrier:0

collisions:0 txqueuelen:1000

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Base address: 0x1000

To ping any PC from Network, connect CoreCommander board to the
Network with RJ-45 cable but if you are connecting a PC to the
CoreCommander then use RJ-45 cross cable.

Example:

/>ping -c 2 192.168.0.13

PING 192.168.0.13 (192.168.0.13): 56 data bytes

Demonstrations uClinux CoreCommander BSP

64 bytes from 192.168.0.13: icmp_seq=0 ttl=128
time=0.0 ms

64 bytes from 192.168.0.13: icmp_seq=1 ttl=128
time=0.0 ms

--- 192.168.0.13 ping statistics ---

2 packets transmitted, 2 packets received, 0%
packet loss

round-trip min/avg/max = 0.0/0.0/0.0 ms

58 System Level Solutions

System Level Solutions 59

Appendix B. SD Host Controller Driver
SD Host Controller Block driver can’t be accessed directly from the
user space. Kernel can manage read/write block. i.e. there is not any
specific API to access SD card Blocks.

To access SD Card blocks, mount SD Card with proper file system
using mount utility. Before mounting SD Card, insert the SD card into
the CoreCommander board.

Example:

>mount -t vfat /dev/mmcblk0 /mnt �

Example below shows the vfat file system is mounted on the SD card.
Now, user can access Blocks as a file.

Sometimes, when user uses this command on console, mounting fails
and returns with the following message.

Example:

/>mount -t vfat /dev/mmcblk0 /mnt �

FAT: bogus number of reserved sectors

VFS: Can't find a valid FAT file system on dev
SLS_SD.

Error occurs due to the file system mounted on the SD Card is
supported by windows only and not by uClinux. To solve this problem
format the SD Card with dosfs in Dos and in uClinux, select mkdosfs
utility from user application in uClinux-dist.

Example

Filesystem Applications --->

 --- MSDOS

 [*] mkdosfs

 [] dosfsck

When you build uClinux, you will get mkdosfs utility in your romfs.
Give following command on the console window to format the SD
card.

Example

/>mkdosfs -I -F 16 /dev/mmcblk0 �

mkdosfs 2.10 (22 Sep 2003)

System Level Solutions 61

Appendix C. USB 2.0 Driver
Use SLS USB 2.0 driver API to open, write and read data to/from the
USB device.

Example below shows how to open the driver.

Example:
usb_fd = open("/dev/usb_20", O_RDONLY |O_NOCTTY);
if(usb_fd < 0)
printf("Sorry, No USB found >>>\n");

else
 printf("USB Opened Successfully >>\n\n\n");

Before reading or writing data to/from the USB device, configure the
driver. To configure the driver, first set all the variables defined in the
following structures and pass the address of these structures to ioctl ()
with appropriate macro arguments.

Structure Definition:
typedef union
{
 unsigned int temp;
 struct
 {
 unsigned int MAX_PL_SIZE : 11;
 unsigned int TRANSFER_FRAME : 2;
 char RESERVED3 : 3;
 unsigned int SMALL_OK : 1;
 unsigned int LARGE_OK : 1;
 unsigned int EP_NO : 4;
 unsigned int EP_STAT : 2;
 unsigned int EP_TRNASFER_TYPE : 2;
 unsigned int EP_TYPE : 2;
 unsigned int DATA_PID : 2;
 unsigned int BUF_SEL : 2;
 }bitmap;
}EP_CSR;

Table 1 : EP_CSR Structure Description

Field Description
MAX_PL_SIZE Maximum Payload Size

High Speed = 512 bytes

Full Speed = 64 bytes

TRANSFER_FRAME Number of transaction per microframe.

RESERVED3 Reserved

Demonstrations uClinux CoreCommander BSP

SMALL_OK 1 - Accept data packets of less than
MAX_PL_SZ (RX only)

0 - Ignore data packets of less than
MAX_PL_SZ (RX only)

LARGE_OK 1 - Accept data packets of less than
MAX_PL_SZ (RX only)

0 - Ignore data packets of less than
MAX_PL_SZ (RX only)

EP_NO Endpoint Number

EP_STAT Endpoint Status

EP_TRNASFER_TYPE Transfer Type

00 : Interrupt

01 : Isochronous

10 : Bulk

11 : Reserved

EP_TYPE Endpoint Type

00 : Control Endpoint

01 :IN EndPoint

10 : OUT Endpoint

11 : Reserved

DATA_PID These two bits are used by the USB core to
keep track of the data PID for high speed
endpoints and for DATA0/DATA1 toggling.

BUF_SEL Buffer Select

00 : Buffer 0

01 : Buffer 1

1x :Reserved

Example:

ioctl(usb_fd, CONFIG_ENDPOINT_CSR, &<Structure
Name>);

Where Structure Name is variable of type EP_CSR.
Structure Definition:

typedef struct
{
 unsigned int No;
 unsigned int call_type; //polling or irq
 unsigned int fn_ptr;
 void *ptr;
}Config_Driver;

62 System Level Solutions

uClinux CoreCommander BSP Debugging Kernel and User Applications

Table 2 : Config_Driver Structure Description

Field Description
No Endpoint Number

call_type polling based = 1 &

irq based = 2

fn_ptr NULL if call_type = 1

User function pointer if call_type = 2

ptr NULL if call_type = 1

Buffer Pointer if call_type = 2

Example:
ioctl(usb_fd, USB20_CONFIG_DRIVER, &<Structure
Name>);Where Structure Name is variable of type
Config_Driver.

Structure Definition:

typedef struct
{
 volatile unsigned int b_size_hs;
 volatile unsigned int b_size_fs;
 volatile char ep_no;
 unsigned char *p_buff;
}Config_Buffer;

Table 3 : Config_Buffer Structure Description

Field Description
b_size_hs Buffer Size in High Speed Mode

b_size_fs Buffer Size in Full Speed Mode

ep_no Endpoint Number.

p_buff Buffer Pointer

Example:
ioctl(usb_fd, USB20_CONFIG_BUFFERSIZE, &<Structure
Name>);
Where Structure Name is variable of type
Config_Buffer.

After configuring the driver, If you want to define your own error
handler function then you can define and pass the address of the same
function to the ioctl(), otherwise you can use the default error handling
function given in the port-interface.c example file located at
/PortInterface.

System Level Solutions 63

Demonstrations uClinux CoreCommander BSP

Example:
ioctl(usb_fd, USB20_CONFIG_ERROR_FUNCTION, &<Error
Handling function Name>);

If you don’t want to use the error handlilng mechanism then you can
omit it.

Now, you can write/read data to/from device using Bulk-in/out
operation by defining appropriate values to all the variables inside
Transfer_details structure.

Structure Definition:
typedef struct
{
 unsigned char ep_no;
 unsigned char Transfer_direction;
 unsigned char *d_Buffer;
 unsigned int size;
 unsigned int d_completed;
 unsigned char use_dma;
}Transfer_details;

Table 4 : Transfer_details Structure Description

Field Description
ep_no Endpoint Number

Transfer_direction Bulk out = 1

Bulk in = 0

d_Buffer Data Buffer Pointer

size Size of Data

d_completed No. of Data bytes transfered by driver. Default
value is 0.

use_dma DMA Use status

use_dma=1 (uses DMA)

use_dma=0 (driver will not use DMA)

Example:
 Transfer_details t_details;
 Char Read_Buff[4];

 t_details.ep_no = 2;
 t_details.Transfer_direction = 1;
 t_details.d_Buffer = Read_Buff;
 t_details.size = 4;
 t_details.d_completed = 0;
 t_details.use_dma = 1;
 ioctl(usb_fd, DATA_TRANSFER_REQUEST,&t_details);

64 System Level Solutions

uClinux CoreCommander BSP Debugging Kernel and User Applications

This code will request the host to bulk out 4 bytes in Read_Buff buffer
on endpoint 2 using DMA.

 To get more information about USB 2.0 driver API, refere port-
interface.c example file located at \Demo\PortInterface.

System Level Solutions 65

	Introduction
	1.1 Software
	1.2 Hardware
	1.3 Development Platform Requirements
	1.4 Setup

	2. uClinux CoreCommander BSP Development Environment
	2.1 CoreCommander BSP SOPC System
	2.2 Development Environment
	2.2.1 CoreCommander BSP Components
	2.2.2 IP Address Used

	2.3 Development Host
	2.3.1 Downloading and Unpacking uClinux CoreCommander BSP
	2.3.2 Directory Contents

	2.4 Development Target
	2.4.1 Configuring and Compiling uClinux
	Start Configuration Menu
	Configuring Vendor/Product Settings
	Configuring Kernel/Library/Defaults Settings

	2.4.2 Set System.ptf
	2.4.3 Customization of Kernel Settings
	2.4.4 Building uClinux zImage

	3. Downloading and Running zImage
	3.1 Running zImage on Linux Using JTAG UART Console

	4. Configuring Device Drivers and File Systems
	4.1 Board Selection
	4.2 Flash Memory (MTD) Driver
	4.2.1 JFFS2 File System Configuration

	4.3 SLS SD Host Controller Driver
	4.3.1 VFAT

	4.4 SLS Ethernet IP Driver
	4.4.1 NFS

	4.5 SLS USB 2.0 Driver
	4.6 SLS Keypad Driver
	4.7 SLS LCD Frame buffer Driver
	4.8 JTAG UART Driver

	5. User Applications
	5.1 Flash and JFFS2 Application
	5.1.1 Flash Tools
	5.1.2 Accessing Flash and JFFS2 Applications
	5.1.3 Configuring Flash Partition

	5.2 LCD and SD Card Application
	5.2.1 Using LCD Frame Buffer Driver API
	5.2.2 Viewing JPEG Images from SD Card

	5.3 Adding New User Application
	5.4 Build New User Application Using SLS IP Drivers
	5.5 Shell Commands

	6. Configuring Network utilities and NFS (Client)
	6.1 Configuring DHCP Client
	6.2 Static IP Allocation
	6.3 Mounting NFS on CoreCommander
	6.3.1 NFS Server (Host) Set Up
	6.3.2 NFS Client (CoreCommander) Setup

	6.4 Configuring inetd, telnetd, ftpd Server
	6.5 Configuring boa Server

	7. Debugging Kernel and User Application
	7.1 Debugging uClinux kernel using nios2-elf-insight over JTAG
	7.2 Debugging User Application using gdbserver over Ethernet
	7.3 Debugging User application using Eclipse IDE

	8. Demonstrations & Quick Reference
	8.1 Demonstrations
	8.1.1 Picview
	Running Picview Application

	8.1.2 ChatServer
	Running ChatServer Application

	8.1.3 PortInterface
	Reading/Writing/Verifying Data From/to the USB 2.0 Device on Linux PC
	Installing USB2.0 device driver on Linux PC
	Downloading and Running zImage
	Running PortInterface Host Application

	Reading/Writing/Verifying Data from/to the USB 2.0 Device on Windows PC
	Downloading and Running zImage for Windows
	Running Host Application on Windows PC

	8.2 Quick Reference
	8.2.1 Prebuilt_zImage
	SD Card Formatting
	Other Applications

